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A recurring problem in computational physics and chemistry is the minimization of astructure with respect to atomic positions. One di�culty is the development of an accuratemodel of atomic interactions in the material. However, even once such a model is chosen,optimization is often di�cult, due to the many competing structures that may be locallystable. This is especially true for non-crystalline structures, such as atomic clusters anddefect structures (such as grain boundaries or surfaces).6 While accurate models of materialsare becoming increasingly available, and the computational time to calculate energies israpidly decreasing, there have been relatively few developments in the optimization process.Most e�orts focus on using some form of steepest descent or conjugate gradient relaxation, orMonte Carlo or molecular dynamic simulations (including simulated annealing approaches).In this paper, we use a recently developed technique1 to study the long-standing Thomsonproblem of �nding the lowest energy con�guration of N point charges on a unit sphere.The problem we consider here originated with Thomson's \plum pudding" model of theatomic nucleus. This minimization problem has been attempted by simulated annealing,8{11Monte Carlo approaches,2;12 and symmetry considerations,13 yet none of these techniqueshave proven as reliable as the simplest method: a repeated random search with a steepestdescent relaxation.3;4 Thus, this problem is an ideal benchmark of new global optimizationalgorithms.The energy of N point charges constrained to lie on the surface of a unit sphere isE = 12Xi Xj 6=i 1jri � rjj : (1)Even for small N , there are multiple possible stable structures; for N <� 20, simulated an-nealing su�ces to locate the global minimum.8{10 However, this will not su�ce once thenumber of local minima is large. The di�culty is that the number of metastable structuresgrows exponentially3;4 with N , and these approaches do not explore di�erent minima su�-ciently rapidly once N becomes large (N > 70). For N � 100 � 110, there are � 50 � 90metastable states;4 this grows to � 8000 for N � 200. Furthermore, for many of the struc-tures, the basin of attraction (or \catchment region") containing the global minimum issmall compared with those of other minima.4These di�culties are a generic feature of many systems, including the related problemof determining structures of atomic clusters.1;6;7 Often, there are techniques to provide lo-cal optimization, such as steepest descent or conjugate gradient algorithms. Monte Carlosimulations2 and simulated annealing8{10 are typically used to explore nearby minima, inan e�ort to improve upon the current minimum. The di�culty is that these techniques for\hopping" from one minimum to the next are time consuming, and if there are many localminima, with large barriers separating them, then these techniques are not practical. TheThomson problem is a good example of such a problem. Finding a local minimum from arandom structure is straightforward, but exploring many di�erent minima is not.We have used a genetic algorithm15 (GA) to tackle this problem. The idea is simple:starting with a small set of initial geometries, a number of \children" { structures that derivetheir properties from two of the initial geometries { are generated. From this \population,"the lowest energy (\most �t") structures are chosen to replace the initial geometries. Re-peating this process leads to lower energy structures. In general, there may be other search2



criteria; these may be accounted for directly by constructing a \�tness" function that re
ectsthe di�erent criteria of interest, and optimizing this function by selection.15 GA's have beenapplied to problems in a number of �elds, but there have been few successful applicationsto the physical sciences.16{19One of the di�culties in the type of problem that we are considering is that the evaluationof the energy is time consuming, especially for problems using more accurate models ofmaterials. For most current applications of GAs, the computational e�ort in calculatingthe �tness is very small. Therefore, we can not a�ord to use traditional approaches, whichmight require calculating the energies of thousands of structures, most of which would notbe competitive.17;18Our approach is successful because of a novel mating algorithm1 that allows for e�cientexploration of di�erent minima, while preserving the important properties of the parentstructures. Unlike most applications of genetic algorithms,15;17{19 our algorithm is not basedupon an arti�cial \genetic sequence:" most implementations represent the parameters of theproblem symbolically as a string of numbers or characters, and then perform \mating" and\mutation" operations on a set of strings. Such an approach is ine�cient for structuraloptimization, as many resulting structures are clearly unphysical. Instead of working withan arti�cial genetic sequence, we work directly with the structure itself. A new candidatestructure is generated from two randomly chosen halves of two parent structures, subject tothe constraint that the correct number of particles is maintained. Each candidate is thenfully relaxed, using a conjugate gradient technique. By breaking with the traditional GAapproaches, we are able to generate new structures that may retain the important structuralfeatures of the parents, while still being able to explore di�erent local minima in the solutionlandscape. This approach has been successful for �nding fullerene structures,1 encouragingus to attempt this problem.In the work presented here, we began with four random geometries. By generatingchildren from each pair of initial geometries, we construct sixteen more candidate structures.(Note that a cluster may \mate" with itself, by aligning any two randomly chosen halvesof the structure.) From the twenty structures, we select the best four candidates, choosingonly structures whose energies di�er by more than �E = 10�6 to ensure that one structuredoes not dominate the entire population.For 10 � N � 132, and also for N = 192 and N = 212, we found the same minimumenergies as given in Refs. 4 and 5. Most strikingly, for N � 132, we were almost always ableto �nd the lowest energy structures within 5 generations. With these successes, we went onto search for the lowest energy structures for 133 � N � 200. The values for 110 � N � 200are shown in Table I. We ran these for 10 generations, considering a total of 200 structures.Note that our technique does not guarantee that the lowest energy will be found, althoughwe believe that in most cases the �nal structure was the global minimum. We �tted thelowest energies to the form12;4E(N) = N22 �1 � aN�1=2 + bN�3=2� : (2)The �tted values were a = 1:10461�0:00001 and b = 0:137�0:001, in reasonable agreementwith the �t of Erber4 and the calculations of Glasser.123



In �g. 1, we show the di�erence between the �tted energy and the actual value for thelowest energy structure obtained using our approach. Note that there are a series of \magic"numbers, with particularly low ground-state energies (relative to the trend given in Eq. 2),for N = 12, 32, 72, 122, 132, 137, 146, 182, and 187. In this series, the structures forN = 12, 32, 72, 122, 132 and 192 have icosahedral symmetry. The icosahedral structuresfor N =212, 272, 282 and 312 also have very low energies.5 Icosahedral structures have beenpredicted to have the lowest energy,11 but for N = 42, 92 and 162, the icosahedral structureshave high energies relative to the trend in Eq. 2.For most of the lowest energy structures we found, the atoms tend to arrange themselvesin a triangular con�guration, with twelve points that have �ve near neighbors, and therest having six neighbors (see �g. 2). With this type of con�guration, the application ofEuler's formula predicts that the number of faces will be F = 2N � 4. This prediction iscon�rmed for most of the lowest energy structures, with some exceptions (see Ref. 4). (Theexceptions demonstrate that not all structures can be uniquely decomposed into triangles {on some structures, there are rectangular faces. This counter-intuitive result illustrates thedi�culties in making general statements concerning this problem.) The �ve-fold coordinatedpoints tend to separate themselves { suggesting that the icosahedral structures would beparticularly stable, with each of the �ve-fold coordinated points located along a line of�ve-fold rotational symmetry.The striking result is that this technique can �nd the lowest energy con�gurations, bothfor the high-symmetry icosahedral structures and also for structures with lower symmetry.The structures for N = 137, 182, and 187 are distorted icosahedral structures, with D5symmetry. The N = 146 structure, shown in �g. 2, has D2 symmetry, much lower thanthe symmetries of the other magic numbers. Unlike many of the structures, in which the�ve-fold coordinated charges form equilateral triangles, the �ve-fold coordinated points arenot in an icosahedral arrangement. Instead, the lines connecting �ve-fold coordinated atomsalong the shortest distance between them produce two interlocking \C" structures. To ourknowledge, no other similar structure has been predicted as being particularly favorable.We believe that there will be other magic numbers with similar structures at larger N , andare currently exploring this.It may seem surprising that such a simple approach works where more complicatedschemes have not. We believe that there are two principal features of our technique that areimportant. First, we try many di�erent geometries in parallel rather than exploring phasespace in a single series of geometries. Simulated annealing or other techniques may exploreseveral di�erent local minima with a reasonable computational e�ort, but for problems withmany minima, these approaches becomes impractical. This is why a simple random search ismore successful than these approaches. Second, unlike a random search or more traditionalapproaches to genetic algorithms, our technique of generating new structures preserves muchof the previous structural optimization that has occurred. The two halves remain reasonablyintact, while \healing" occurs near the joining region. Thus, while we rapidly explore otherminima, we do so with a bias toward the types of low energy structures that have alreadybeen obtained.We believe that these results are an important test of our optimization technique, asthis is the �rst systematic approach that reliably reproduces all of the known low-energystructures. Our mating algorithm is easily implemented, computationally e�cient, and4



capable of �nding unusual structures. We are currently applying similar techniques tomore realistic atomic models, including Lennard-Jones and embedded atom clusters, andare exploring ways of optimizing our approach. GA's have been previously proven usefulin many areas, but have not been as popular or successful in the physical sciences.16{19 Webelieve that successes such as ours will allow the strengths of GA's to become an e�ectivetool in the physical sciences. ACKNOWLEDGMENTSWe would like to thank T. Erber for sending a preprint of his recent article concerningthis problem. Ames Laboratory is operated for the U.S. Department of Energy by IowaState University under Contract No. W-7405-Eng-82. This work was supported by theDirector for Energy Research, O�ce of Basic Energy Sciences, and the High PerformanceComputing and Communications initiative.
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TABLESTABLE I.N E1 N E1 N E1111 5515.29321459 141 9016.61534919 171 13386.35593072112 5618.04488233 142 9148.27157999 172 13547.01810880113 5721.82497803 143 9280.83985119 173 13708.63524304114 5826.52157216 144 9414.37179446 174 13871.18709230115 5932.18128578 145 9548.92883723 175 14034.78130694116 6038.81559358 146 9684.38182558 176 14199.35477565117 6146.34244658 147 9820.93237838 177 14364.85051922118 6254.87702779 148 9958.40600427 178 14531.30955293119 6364.34731748 149 10096.85990740 179 14698.75459423120 6474.75632498 150 10236.19643670 180 14867.09992753121 6586.12194958 151 10376.57146928 181 15036.46723978122 6698.37449926 152 10517.86759288 182 15206.73061091123 6811.82722817 153 10660.08274824 183 15378.16657104124 6926.16997419 154 10803.37242114 184 15550.42145032125 7041.47326402 155 10947.57469228 185 15723.72007408126 7157.66922487 156 11092.80311478 186 15897.89743705127 7274.81950468 157 11238.90304116 187 16072.97518632128 7393.00744307 158 11385.99018620 188 16249.25013148129 7512.10731927 159 11534.02396096 189 16426.37193887130 7632.16737891 160 11683.05480555 190 16604.44596500131 7753.20516694 161 11833.08473947 191 16783.45221937132 7875.04534280 162 11984.05033581 192 16963.33838646133 7998.17921290 163 12136.01305322 193 17144.56474088134 8122.08972119 164 12288.93010532 194 17326.61613647135 8246.90948699 165 12442.80445137 195 17509.48930393136 8372.74330254 166 12597.64907132 196 17693.46055212137 8499.53449478 167 12753.46942975 197 17878.38274577138 8627.40638988 168 12910.21267227 198 18064.28806296139 8756.22705695 169 13068.00645113 199 18251.08249564140 8885.98060904 170 13226.68107860 200 18438.84227198
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FIG. 1. We show the di�erence between the calculated lowest energy con�guration and the �tto the form 12N2(1 + aN�1=2 + bN�3=2). Note the \magic numbers" at N =12, 32, 72, 122, 132,137, 146, 182, 187 and 192. 8



FIG. 2. This �gure shows the lowest energy structure for N = 146, looking down one of thetwo-fold axes. We have emphasized the �ve-fold coordinated charges, and indicated the interlocking\C" structures formed by connecting the �ve-fold coordinated charges to their nearest neighbor.
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