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Molecular geometry optimization with a genetic algorithmD.M. Deaven and K.M. HoPhysics Department, Ames Laboratory USDOE, Ames, IA 50011(January 18, 1995 (accepted for publication in Physical Review Letters))We present a method for reliably determining the lowest energy structure of an atomic clusterin an arbitrary model potential. The method is based on a genetic algorithm, which operateson a population of candidate structures to produce new candidates with lower energies. Ourmethod dramatically outperforms simulated annealing, which we demonstrate by applying thegenetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithme�ciently �nds fullerene cluster structures up to C60 starting from random atomic coordinates.Advances in computer technology have mademoleculardynamics simulationsmore and more popular in studyingthe behavior of complex systems. Even with modern-daycomputers, however, there are still two main limitationsfacing atomistic simulations: system size and simulationtime. While recent developments in parallel computerdesign and algorithms have made considerable progressin enlarging the system size that can be accessed usingatomistic simulations, methods for shortening the simu-lation time still remain relatively unexplored.One example where such methods will be useful is inthe determination of the lowest energy con�gurations of acollection of atoms. Because the number of candidate lo-cal energy minima grows exponentially with the numberof atoms, the computational e�ort scales exponentiallywith problem size, making it a member of the NP -hardproblem class [1]. In practice, realistic potentials de-scribing covalently bonded materials possess signi�cantlymore rugged energy landscapes than the two-body poten-tials addressed by the authors of Ref. [1], further increas-ing the di�culty. Attempts to use simulated annealingto �nd the global energy minimum in these systems arefrustrated by high energy barriers which trap the simu-lation in one of the numerous metastable con�gurations.Thus an algorithm is needed which can `hop' from oneminimum to another and permit an e�cient sampling ofphase space.In this letter, we will describe the application of suchan algorithm to the concrete example of determining theground state structure of small atomic clusters. The mostinteresting clusters are those which lie in the transitionrange between molecules and bulk matter. These areprecisely the ones which can be expected to have un-usual structures which are unrelated to either the bulkor molecular limits. For a few atoms, the ground statecan sometimes be found by a brute force search of con-�guration space. For up to ten or twenty atoms, de-pending upon the potential, simulated annealing may beemployed to generate some candidate ground state con-

�gurations [2]. For more atoms than this, the simulationtime required to �nd the minimum by simulated anneal-ing is usually prohibitive, because evaluations of the po-tential and forces are too expensive. In this regime oneis left with judicious guessing of likely candidate groundstate structures.Our approach is based on the genetic algorithm (GA),an optimization strategy inspired by the Darwinian evo-lution process [3]. Starting with a population of candi-date structures, we relax these candidates to the nearestlocal minimum. Using the relaxed energies as the crite-ria of �tness, a fraction of the population is selected as\parents." The next generation of candidate structuresis produced by \mating" these parents. The process isrepeated until the ground state structure is located.We have applied this algorithm to optimize the geom-etry of carbon clusters up to C60. In all cases we studied,the algorithm e�ciently �nds the ground state structuresstarting from an unbiased population of random atomiccoordinates. This performance is very impressive sincecarbon clusters are bound by strong directional bondswhich result in large energy barriers between di�erent iso-mers. Although there have been many previous attemptsto generate the C60 buckyball structure from simulatedannealing, none has yielded the ground state structure[4].Method { Before presenting our results, we will de-scribe our genetic algorithm procedure in more detail.The choice of mating procedure is the central choice onemust make in constructing a genetic algorithm. In ane�cient algorithm, it should impart important proper-ties of the parent clusters to the children. A commonchoice [5] is to �rst map the physical structure onto abinary number string, then use string recombination as amating procedure. Such an approach has been applied tooptimize the packing structure of small molecular clustersand the conformation of some molecules [6]. We foundthat it is not very e�cient, however, when used to opti-mize the geometry of atomic clusters. This is because the1



mating operation does not preserve the characteristics ofthe parents.In the present work, we represent an atomic cluster bythe list of N atomic cartesian coordinates xi in arbitraryorder, G = fx1;x2; : : : ;xNg: (1)Our mating operator P : P (G;G0) ! G00 performs thefollowing action upon two parent geometries G and G0to produce a child G00. First, we choose a random planepassing through the center of mass of each parent cluster.We then cut the parent clusters in this plane, and assem-ble the child G00 from the atoms of G which lie above theplane, and the atoms of G0 which lie below the plane. Ifthe child generated in this manner does not contain thecorrect number of atoms, the parent clusters are trans-lated an equal distance in opposing directions normal tothe cut plane so as to produce a child G00 which containsthe correct number of atoms.Relaxation to the nearest local minimum is per-formed with conjugate-gradient minimization or molecu-lar dynamics quenching. Typically, about 16 conjugate-gradient steps or about 30 molecular dynamics steps areapplied to a new geometry before a decision is madewhether further optimization is warranted.We preferentially select parents with lower energy fromfGg. The probability p(G) of an individual candidateG to be selected for mating is given by the Boltzmanndistribution p(G) / exp(�E(G)=Tm); (2)where E(G) is the energy per atom of the candidate G,and the mating `temperature' Tm is chosen to be roughlyequal to the range of energies in fGg.In some cases, described in the next section, we foundit necessary to apply mutations to members of the pop-ulation. We de�ne a mutation operator M :M (G) ! G0which performs one of two functions with equal probabil-ity. The �rst mutation function moves the atoms in G arandom distance (of the same order as a bond length), ina random direction, a random number of times (between5 and 50), while separating unphysically close atoms be-tween each step. The second mutation function imple-ments a simple search for an adjacent watershed in thepotential energy hypersurface. We employ an algorithm[7] which takes a random number of steps in atomic co-ordinate space. At each step the algorithm changes di-rection so as to maintain travel along a direction slightlyuphill to an equipotential line. The result of this is gen-erally a high-energy cluster, but one which lies in an ad-jacent watershed region of E(fxg).We maintain a population fGg of p candidates, andcreate subsequent generations as follows. Parents arecontinuously chosen from fGg with probability given byEq. (2) and mated using the mating procedure described

FIG. 1. Generation of the C60 molecule, starting from ran-dom coordinates, using the genetic algorithm described bythe text with 4 candidates (p = 4) and no mutation (� = 0).The energy per atom is plotted for the lowest energy (solidline) and highest energy (dashed line) candidate structure infGg as a function of the number of genetic mating operationsP (see text) that have been applied. Several of the inter-mediate structures which contain defects are illustrated attop: (a) contains one 12-membered ring and two 7-memberedrings, (b) contains a 7-membered ring, (c) contains the correctdistribution of pentagons and hexagons, but two pentagonsare adjacent. The ideal icosahedral buckyball structure isachieved shortly after 5000 genetic operations.above. A fraction � of the children generated in thisway are mutated; � = 0 means no mutation occurs. The(possibly mutated) child is relaxed to the nearest localminimum and selected for inclusion in the population ifits energy is lower than another candidate in fGg.This procedure requires the algorithm to keep track ofa large number of candidates in fGg, since the popula-tion generally becomes �lled with almost identical low-energy candidates. These duplicated e�orts reduce thealgorithm's e�ciency. To prevent this, we introduce anenergy resolution �E, and allow new entries to fGg onlyif there are no other candidates already in fGg whoseenergy is within �E of the new entry's energy.Results { To illustrate the method, we use a tight-binding model for carbon, described elsewhere [8]. Thispotential accurately describes the energetics of fullerenestructures.Fig. 1 shows the model potential energy of the lowestand highest energy C60 cluster in fGg versus the num-ber of genetic mating operations performed with no mu-tation (� = 0) on a population of p = 4 candidates,starting from coordinates chosen at random. We useda mating temperature Tm = 0:2 eV/atom, and an en-ergy resolution �E = 0:01 eV/atom. This cluster is too2



large for unbiased simulated annealing [9] to arrive atthe correct global minimum (the icosahedral buckmin-sterfullerene cage). As Fig. 1 illustrates, the genetic al-gorithm correctly generates the cage after roughly 5000mating operations.Fig. 1 illustrates several generic features of the algo-rithm. During the initial few generations, the energydrops very quickly and the population soon consists ofreasonable candidates, similar to what would be observedwith simulated annealing. This initial period is usuallya small fraction of the total time spent by the algorithm.The rest of the time is spent in an end game, where theremaining defects in the structure are removed (Fig. 1(a) { (c)). The general behavior of the genetic algorithmis remarkably resistant to changes in the details of thealgorithm. The C60 cage is found reliably over a widerange of values of the mating temperature Tm, number ofcandidates p, and the number of conjugate-gradient opti-mizations performed upon each application of O. In ad-dition, the use of schemes other than Eq. (2) for selectingparents from fGg also leads to the correct �nal answer.For example, we tried using equal mating probabilitiesp(G) for all candidates regardless of energy, as well as aprobability linear in the energy. All of these variationsproduced genetic algorithms which worked satisfactorily.In cases with several competing low energy states, itis sometimes advantageous to investigate the minimiza-tion of a number of \ecologies," that is, to repeat theabove process with di�erent starting populations. Forexample, in smaller clusters of carbon atoms, a bimodalmass spectrum has been observed in laser vaporizationexperiments [10], and this has been interpreted [11] asevidence that two regimes of CN cluster growth exist: forN <� 25, mono- and polycyclic rings are formed, while forN >� 25, fullerene cages are formed. Thus, for clustersaround this size, there is a competition between cage-like, ring-like and cap-like structures. Searches for theglobal energy minimum must surmount the di�culty ofbecoming trapped in one of these structural classes.Figs. 2 and 3 show the results of running the geneticalgorithm on C20 and C30 clusters, using the same pa-rameters p = 4 and Tm = 0:2 eV/atom that were usedto generate the C60 cage. The solid line in Fig. 2 il-lustrates the generic result for C20 when no mutationis used (� = 0). The lowest energy structure for C20in the model potential is a polycyclic cap with energy�8:671 eV/atom, and the fullerene cage structure is notfar above, with energy �8:613 eV/atom. Nevertheless,only a small fraction of the � = 0 genetic algorithm ecolo-gies �nd one of these structures within 4000 genetic oper-ations. Instead, the ecologies get `trapped' in monocyclicrings with energy �8:503 eV/atom (Fig. 2 (1c)). The capand the cage structures can be found for C20, however,if we include mutations in our algorithm or, equivalently,by using molecular dynamics annealing for the relaxationprocess. For example, with � = 0:05, about 25% of the

FIG. 2. Running the genetic algorithm on C20. The solidline shows the generic lowest energy structure when the algo-rithm is run with no mutation (� = 0); the structures (1a)- (1c) are present in the population at the times indicated.Essentially all ecologies get trapped in monocyclic rings (1c).The dashed line (structures (2a) - (2c)) and the dot-dashedline (structures (3a) and (3b)) illustrate the results when mu-tation is added (� = 0:05).ecologies �nd the polycyclic cap (Fig. 2, broken lines).In the case of C30, the lowest energy structure in themodel potential is a fullerene cage, and roughly 80% ofthe � = 0 ecologies �nd it within 4000 genetic opera-tions. The remaining 20% form cages, but not quicklyenough to �nd the fullerene (Fig. 3, solid line). Withmutations, convergence to the fullerene cage is greatlyincreased. Essentially all of the � = 0:05 ecologies �ndthe C30 cage within 4000 genetic operations (Fig. 3, bro-ken lines). The role of mutation in the algorithm is toallow searches for alternate structural classes. Referringto Fig. 2, one sees precipitous drops in energy when anew class of candidate is discovered. In the case of C30,the cage structural class appears even with � = 0 butis more e�ciently reduced to the perfect structure when� 6= 0.We emphasize that mutation by itself does not e�-ciently lower the energy of a population. We found thatapplication of the mutation operator M in the absence3



FIG. 3. Running the genetic algorithm on C30. The solidline shows the lowest energy structure when the algorithmis run with no mutation (� = 0) for an ecology that failedto �nd the minimum energy con�guration (a fullerene cage)within 4000 genetic operations. The structures (1a) - (1c)are present in the population at the times indicated. Thestructure (1c) resulting after 4000 genetic operations is a cage,and is eventually reduced to the perfect fullerene cage evenwith � = 0. The broken lines illustrate two � = 0:05 ecologieswhich arrive at the perfect cage (2b) via distinct routes (2a),(3a).of mating leads to a drastic decrease in the e�ciency ofthe optimization process.Discussion { Like simulated annealing, the genetic al-gorithm requires repeated evaluation of the energy andforces within the model potential. The higher e�ciencyof the genetic algorithm, however, allows convergence tolow-energy candidates in larger clusters than is possiblewith simulated annealing. We are currently applying themethod to larger carbon clusters and will present thoseresults elsewhere [7]. In addition, we have applied the al-gorithm to systems other than carbon clusters, and ourpreliminary �ndings indicate that the algorithm is e�-cient over a broad class of structural optimization prob-lems. For example, we have successfully applied themethod to bulk and surface geometries, with a suitablymodi�ed mating operator P .The e�ciency of the present algorithm may be in-creased in special cases when the class of desired struc-tures is assumed, and a more complicated mapping be-tween the genetic representation (genotype) and the clus-ter structure (phenotype) could be employed. For in-stance, in the case of the larger carbon fullerene clusters

we expect that a representation in terms of a face-dualmodel [12] would lead to rapid convergence, since onlycage structures would be investigated.While the arti�cial dynamics of the genetic algorithmcannot be expected to reproduce the natural annealingprocess in which atomic clusters are formed, we foundthat the intermediate structures located by the geneticalgorithm on its way to the ground state structure arevery similar to the results of simulated annealing. Thus itappears that the same kinetic factors which in
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